

Calibration

Fluke Calibration Web Seminar Series

Principles and practical tips about electrical, flow, pressure, RF and temperature calibration

How to Perform an Uncertainty Analysis on Piston Gauges Presenter: Mike Bair

Corporate Pressure Metrologist

Objectives of Webinar

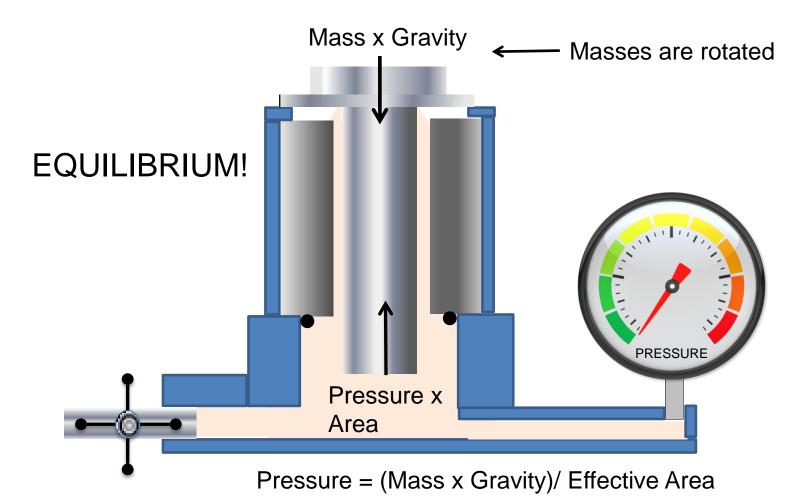
- FLUKE ®
- Get a good idea of what it takes to perform an uncertainty analysis on a Piston Gauge standard.
 - Complete uncertainty analysis training can take much longer than 1 hour. It is assumed that this audience knows at least a little about calculating uncertainty.
 - Piston Gauge uncertainty analysis is complicated. Again 1 hour is not enough time to complete it, but it is enough time to review the essentials.

Objectives of Webinar

- Review a spreadsheet tool used for performing an uncertainty analysis.
 - This will be sent to you when we send the video at the end of the webinar. There are no macros in the spreadsheet tool so it is safe.
 - All functions of the spreadsheet will be explained. Comments are included on the entry cells to help you in the future.
 - Spreadsheet includes control charts for effective area and piston mass. Some explanation of these will be given.

FLUKE

Uncertainty Analysis


- Not going through complete fundamentals of uncertainty analysis.
- If you know very little about uncertainty analysis, please don't leave the webinar.
- You can always review uncertainty analysis fundamentals by playing Jeff Gust's webinar on uncertainty analysis fundamentals, then review this webinar later:
 - http://us.flukecal.com/training/web-seminars/On-demand

FLUKE

Uncertainty Analysis

- But just as a quick review the steps for an analysis are as follows.
 - Determine all influences of uncertainty and their uncertainty, list them as type A or type B
 - Based on their probability distribution and confidence reduce them to a standard uncertainty (1 sigma, k=1)
 - Determine the sensitivity of these standard uncertainties to final measurand. (for example an input in ambient temperature means what in pressure)
 - Express all the standard uncertainties as the final measurand by multiplying them by the sensitivity
 - Accounting for correlations between uncertainties combine them into one value (this is where everyone just RSS's the list)
 - Expand the combined uncertainty to a desired confidence level.

FLUKE

FLUKE .

- Sources of uncertainties for Piston Gauges.
 - The most immediate source are the variables in the pressure equation used to calculate pressure (for gauge mode):

$$P = \frac{M \cdot g_L \left(1 - \frac{\rho_{air}}{\rho_{mass}}\right) + \pi DT}{A_{E(Tref,0)} \left[1 + \left(\alpha_p + \alpha_c\right) \cdot \left(T - 20\right)\right] \left(1 + b_1 1P + b_2 P^2\right)} - \left(\rho_{fluid} - \rho_{air}\right) \cdot g_L \cdot h$$

FLUKE

$$P = \frac{M \cdot g_L \left(1 - \frac{\rho_{air}}{\rho_{mass}} \right) + \pi DT}{A_{E(Tref,0)} \left[1 + \left(\alpha_p + \alpha_c \right) \cdot \left(T - 20 \right) \right] \left(1 + b_1 1P + b_2 P^2 \right)} - \left(\rho_{fluid} - \rho_{air} \right) \cdot g_L \cdot h$$

Variable	Description
М	Mass load
gl	Local gravity
ρ_{AIR}	Air Density
ρ_{MASS}	Average Density of the mass load
Т	Surface tension for hydraulic media
A _{E(Tref,0)}	Effective area at reference temperature and 0 pressure
α _P	Thermal expansion of piston
α_{c}	Thermal expansion of cylinder

FLUKE®

$$P = \frac{M \cdot g_L \left(1 - \frac{\rho_{air}}{\rho_{mass}} \right) + \pi DT}{A_{E(Tref,0)} \left[1 + \left(\alpha_p + \alpha_c \right) \cdot \left(T - 20 \right) \right] \left(1 + b_1 1P + b_2 P^2 \right)} - \left(\rho_{fluid} - \rho_{air} \right) \cdot g_L \cdot h$$

Variable	Description
Т	Piston-Cylinder temperature
$b_1^{}$ or λ	1 st order pressure distortion coefficient
b ₂	2 nd order pressure distortion coefficient
ρ_{FLUID}	Density of the fluid media
h	Pressure head height
P _{REF}	Residual Pressure under bell jar (not shown in the equation)
P _{BARO}	Barometer reading (not shown in the equation)

FLUKE®

- Other contributions
 - Piston-cylinder sensitivity
 - Piston-cylinder performance (from rotation or piston position)
 - Verticality of the piston-cylinder
 - Linearity
 - Stability
- A review of all influences can be found in three different documents in the "literature and education" link on our website.

FLUKE

 Uncertainty Analysis for Pressure Defined by a PG7601, PG7102, PG7202 or PG7302 Piston Gauge

 Typical pressure measurement uncertainty for a PG9607 and PG9602 Piston Gauge Technical Note

 Guide for the uncertainty analysis in pressure when using P3000 Series Deadweight Testers Technical Note

FLUKE

- The ideal state would be a complete analysis for each pressure for measurement uncertainty in a calibration certificate.
- In that case there would be no limits or assumptions, just a calculation based on current conditions.
- Though not completely out of the question, this is very difficult to do and is normally not done.
- Instead an uncertainty analysis for the Piston Gauge is calculated to cover all conditions.

FLUKE

- Limits for the conditions need to be defined in this scenario.
 - What is the worst case temperature correction on the pistoncylinder, i.e. how far from the reference temperature given with the effective area will a correction be made?
 - What modes will the Piston Gauge operate in?
 - What is the largest height for head corrections made?
 - What is the worst case (highest) residual pressure for vacuum?

– What is worse case air density (lowest) in the air buoyancy ©2015 Fluke Correction?

FLUKE

- Some other things to consider are:
 - How do you determine the uncertainty of air density in the air buoyancy correction? How do the instruments used to measure ambient conditions play into it?
 - Uncertainty in air density is included in gauge mode. Uncertainty in the density of mass is included in absolute mode by vacuum.
 - When should we include the uncertainty in elastic deformation (pressure coefficient).

FLUKE

• You may have seen this budget in the previously mentioned documents.

Variable or Parameter	Type Unc	Absolute w/ Application of Vacuum	Absolute by/ Addition of Atmospheric Pressure		Ga	uge	
Full Mass Load -		35 kg	35 kg	55 kg	35 kg	55 kg	
(Relative Unc's)		ppm	ppm	ppm	ppm	ppm	
Mass (M)	B1	2.50	2.50	2.50	2.50	2.50	
Local G	B2	1.00	1.00	1.00	1.00	1.00	
Air Density	B3	n/a	0.38	0.38	0.38	0.38	
Mass Density	B4	n/a	1.60	1.60	1.60	1.60	
Head (height)	B5	0.35	0.35	0.35	0.35	0.35	
Head (density)	B6	0.23	0.23	0.23	0.23	0.23	
Resolution	B9	0.29	0.29	0.29	0.29	0.29	
PC Temp	B10	0.50	0.50	0.50	0.50	0.50	
Verticality	B11	0.10	0.10	0.10	0.10	0.10	
Effective Area	B12	5.00	5.00	5.00	5.00	5.00	
Linearity	B14	0.50	0.50	1.00	0.50	1.00	
Elastic Deformation	B15	0.07	0.07	0.11	0.07	0.11	
Thermal Expansion	B16	0.22	0.22	0.22	0.22	0.22	
Stability Ae	B17	0.50	0.50	0.50	0.50	0.50	
Sensitivity	B13	0.14	0.14	0.14	0.14	0.14	
Туре А	A1	0.50	0.50	0.50	0.50	0.50	
COMBINED	21		6.0 ppm + 5.00 Pa	6.1 ppm + 5.00 Pa	6.0 ppm + 0.04 Pa	6.0 ppm + 0.05 Pa	
COMBINED & EXPAND FOR (K=2)	COMBINED & EXPANDED FOR (K=2)		12 ppm + 10 Pa	12 ppm + 10 Pa	12 ppm + 0.07 Pa	12 ppm + 0.09 Pa	
(Absolute Unc's)		Pa	Pa	Pa	Pa	Pa	
Barometric Pressure	B8	n/a	5.00	5.00	n/a	n/a	
Vac	B7	0.1	n/a	n/a	n/a	n/a	
Surface Tension	n/a	n/a	n/a	n/a	n/a	n/a	
Sensitivity	B13	0.006	0.006	0.006	0.006	0.006	
Bell Mass	B1a	0.025	0.025	0.040	0.025	0.040	
Piston Mass	B1b	0.025	0.025	0.025	0.025	0.025	

FLUKE

• This is a nice uncertainty budget but there are some criticisms with it.

 The relation 			stant					but they are
	or Parameter	Unc	of Vacuum	of Atmosphe			uge	-
not nece		Offe	elated.		IS CON			-
	(Relative Unc's)		ppm	ppm	ppm	ppm	ppm	
	Mass (M)	B1	2.50	2.50	2.50	2.50	2.50	-
	Local G	B2	1.00	1.00	1.00	1.00	1.00	-
	Air Density	B3	n/a	0.38	0.38	0.38	0.38	
 Also the 	analysis	₿	based	on k=	2 inste	adiof	the₅pr	eferred 95%.
	Head (density)	B6	0.23	0.23	0.23	0.23	0.23	
	Resolution	B9	0.29	0.29	0.29	0.29	0.29	
	PC Temp	B10	0.50	0.50	0.50	0.50	0.50	
• • • •	Verticality	B11	0.10	0.10	0.10	0.10	0.10	
– It is not	a spread	sne	et so (pn <u>e</u> mi	ustebe	create	€d with	h the
		B14						-
informat	ion diver	B15 B16	0.07	0.07	0.11	0.07	0.11	
	Stability Ae	B16	0.22	0.22	0.22	0.22	0.22	4
	Sensitivity	B17	0.14	0.50	0.50		0.50	
	Type A	A1	0.14	0.14	0.14	0.14	0.14	-
	COMBINED	AI	5.8 ppm +	6.0 ppm +	6.1 ppm +	6.0 ppm +	6.0 ppm +	
	COMDINED		0.11 Pa	5.00 Pa	5.00 Pa	0.04 Pa	0.05 Pa	
	COMBINED & EXPAND	ED	12 ppm +	12 ppm +	12 ppm +	12 ppm +	12 ppm +	
	FOR (K=2)		0.2 Pa	10 Pa	10 Pa	0.07 Pa	0.09 Pa	
	(Absolute Unc's)		Pa	Pa	Pa	Pa	Pa	1
	Barometric Pressure	B8	n/a	5.00	5.00	n/a	n/a	
	Vac	B7	0.1	n/a	n/a	n/a	n/a	1
	Surface Tension	n/a	n/a	n/a	n/a	n/a	n/a]
	Sensitivity	B13	0.006	0.006	0.006	0.006	0.006]
2015 Eluko Corporation	Bell Mass	B1a	0.025	0.025	0.040	0.025	0.040	
©2015 Fluke Corporation.	Piston Mass	B1b	0.025	0.025	0.025	0.025	0.025]

FLUKE.

 The following is another budget you may have used provided by Ruska. Relative and constants are evaluated together so is not overly conservative.

Influe	Com	ponent Uncert	ainty	Pressure Variant Terms							
Parameter	Typical	Approx.		Rectangular	Normal	Equiv. Std.	Sensitivity	Sensitivity	Std. Unc.	Variance	Std. Unc.
Description	Symbol	Value	Units	Limits (+/-a)	Limits (2 0)	Unc. (1σ)	Coefficient	Value	(1 σ)	(σ ²)	(2 o , ppm)
Effect	ive Area Te	rms									
Effective Area	Ao	8.393E-05	m ²		6.91E-10	3.45E-10	A _o ⁻¹	1.19E+04	4.12E-06	1.69E-11	8.23
Piston Thermal Coef.	αρ	4.550E-06	°C ⁻¹	2.28E-07		1.31E-07	T _{IND} - T _{REF}	-1.00E+00	-1.31E-07	1.73E-14	0.26
Cylinder Thermal Coef.	αc	4.550E-06	°C ⁻¹	2.28E-07		1.31E-07	T _{IND} - T _{REF}	-1.00E+00	-1.31E-07	1.73E-14	0.26
1 st Order Pressure Coef.	b ₁	0.000E+00	Pa ⁻¹		0.00E+00	0.00E+00	P - P _{MID}	6.99E+05	0.00E+00	0.00E+00	0.00
2 nd Order Pressure Coef.	b ₂	0.000E+00	Pa ⁻²		0.00E+00	0.00E+00	(P - P _{MD)} ²	4.88E+11	0.00E+00	0.00E+00	0.00
Tare Coefficient*	τ	0.000E+00	m ²		0.00E+00	0.00E+00	A _o ⁻¹	1.19E+04	0.00E+00		0.00
A _o Stability (2 yrs)	Ao	8.393E-05	m ²		1.12E-10	5.59E-11	A _o ⁻¹	1.19E+04	6.67E-07	4.44E-13	1.33
F	orce Terms										
Mass Load	М	1.198E+01	kg		1.69E-05	8.45E-06	M ⁻¹	8.35E-02	7.05E-07	4.97E-13	1.41
Mass Stability (2 yrs)	М	1.198E+01	kg		7.99E-06	3.99E-06	M ⁻¹	8.35E-02	3.34E-07	1.11E-13	0.67
Local Gravity	g∟	9.793E+00	m/sec ²		9.79E-06	4.90E-06	g∟ ⁻¹	1.02E-01	5.00E-07	2.50E-13	1.00
Air Density	ρ_{AIR}	1.200E+00	kg/m ³		7.00E-03	3.50E-03	ρ _M -1	1.28E-04	4.49E-07	2.01E-13	0.90
Mass Load Density	ρ _м	7.800E+03	kg/m ³	2.00E+01	2.00E+00	1.16E+01	ρ_{AIR}/ρ_{M}^{2}	1.97E-08	2.29E-07	5.23E-14	0.46
Verticality (<0.5 deg.)	θ	0.000E+00	deg.	5.00E-02	5.00E-02	3.82E-02	1.52308E-040	5.82E-06	2.22E-07	4.93E-14	0.44
Sy	stem Term	S									
Indicated Temperature	T _{IND}	2.200E+01	°C	1.41E-01		8.16E-02	$\alpha_{\rm P} + \alpha_{\rm C}$	9.10E-06	7.43E-07	5.52E-13	1.49
Density of Fluid	ρ_{FLUID}	1.723E+01	kg/m ³	5.17E-01		2.98E-01	A _o h/M	0.00E+00	0.00E+00	0.00E+00	0.00
Fluid Head Height	h	0.000E+00	m		5.08E-03	2.54E-03	A₀(ρ _{FLUID} -ρ _{AIR})/M	1.12E-04	2.85E-07	8.14E-14	0.57
Float Position	fpi	0.000E+00	m		2.54E-04	1.27E-04	A₀(ρ _{FLUID} -ρ _{AIR})/M	1.12E-04	1.43E-08	2.03E-16	0.03
Reference Pressure	P _{REF}	0.000E+00	Ра		0.00E+00	0.00E+00	P ⁻¹	7.15E-07	0.00E+00	0.00E+00	0.00
Type A Unc. (typical)	σ	8.393E-05	m ²		1.68E-10	8.39E-11	A _o ⁻¹	1.19E+04	1.00E-06	1.00E-12	2.00
Piston/Cylinder: C-xxx			*Un	certainty in Tare coefficient is an additive term.				Comb	bined Variance:	2.02E-11	
Masses: 2468-799/2465-799								Combined Un	certainty (k=1):	4.50E-06	
Operating Pressure: 139	orgen)				E	Expanded Unc	ertainty (k=2):	9.0 ppm			

FLUKE

- Also a nice budget but can also be criticized.
 - The spreadsheet is for a single pressure.

Influe		Com	ponent Uncert	ainty	Pressure Variant Terms						
Parameter	Typical	Approx.		Rectangular	Normal	Equiv. Std.	Sensitivity	Sensitivity	Std. Unc.	Variance	Std. Und
Rescription	Symbol	Value	Units	Limits (+/-a)	Limits (2o)	fUnc. (10)	Coefficient	Value		(σ ²)	(2 o , ppn
- INO IIEflet	veSreade	me gn	/еп	SINCE		<u>101 a</u>	Single	; pies	sure		
Effective Area	Ao	8.393E-05	m ²		6.91E-10	3.45E-10	A _o ⁻¹	1.19E+04	4.12E-06	1.69E-11	8.23
Piston Thermal Coef.	αρ	4.550E-06	°C ⁻¹	2.28E-07		1.31E-07	T _{IND} - T _{REF}	-1.00E+00	-1.31E-07	1.73E-14	0.26
Cylinder Thermal Coef.	αc	4.550E-06	°C-1	2.28E-07		1.31E-07	T _{IND} - T _{REF}	-1.00E+00	-1.31E-07	1.73E-14	0.26
1 st Order Pressure Coef.	b ₁	0.000E+00	Pa⁻¹		0.00E+00	0.00E+00	P - P _{MID}	6.99E+05	0.00E+00	0.00E+00	0.00
	0es	N@ [+@	se	95%	DOBEOK	D.00E+00	(P - P _{MID)} ²	4.88E+11	0.00E+00	0.00E+00	0.00
Tare Coefficient*	τ	0.000E+00	m ²		0.00E+00	0.00E+00	A _o ⁻¹	1.19E+04	0.00E+00		0.00
A _o Stability (2 yrs)	Ao	8.393E-05	m ²		1.12E-10	5.59E-11	A _o ⁻¹	1.19E+04	6.67E-07	4.44E-13	1.33
F	orce Terms	6									
Mass Load	М	1.198E+01	kg		1.69E-05	8.45E-06	M ⁻¹	8.35E-02	7.05E-07	4.97E-13	1.41
	าลคม	2198E+17C		res u	S Cato	naws	tis of n	node	ane	medi	a 0.67
Local Gravity	g.	9.793E+00	m/sec ²		9.79E-06	4.90E-06	g∟	1.02E-01	5.00E-07	2.50E-13	1.00
Air Density	ρ_{AIR}	1.200E+00	kg/m ³		7.00E-03	3.50E-03	ρ _M -1	1.28E-04	4.49E-07	2.01E-13	0.90
Mass Load Density	ρм	7.800E+03	kg/m ³	2.00E+01	2.00E+00	1.16E+01	$\rho_{AIR}/{\rho_M}^2$	1.97E-08	2.29E-07	5.23E-14	0.46
Verticality (<0.5 deg.)	θ	0.000E+00	deg.	5.00E-02	5.00E-02	3.82E-02	1.52308E-040	5.82E-06	2.22E-07	4.93E-14	0.44
S	ystem Term	S									
Indicated Temperature	T _{IND}	2.200E+01	°C	1.41E-01		8.16E-02	$\alpha_{P} + \alpha_{C}$	9.10E-06	7.43E-07	5.52E-13	1.49
Density of Fluid	ρ_{FLUID}	1.723E+01	kg/m ³	5.17E-01		2.98E-01	A _o h/M	0.00E+00	0.00E+00	0.00E+00	0.00
Fluid Head Height	h	0.000E+00	m		5.08E-03	2.54E-03	$A_o(\rho_{FLUID}-\rho_{AIR})/M$	1.12E-04	2.85E-07	8.14E-14	0.57
Float Position	fpi	0.000E+00	m		2.54E-04	1.27E-04	A₀(ρ _{FLUID} -ρ _{AIR})/M	1.12E-04	1.43E-08	2.03E-16	0.03
Reference Pressure	P _{REF}	0.000E+00	Ра		0.00E+00	0.00E+00	P ⁻¹	7.15E-07	0.00E+00	0.00E+00	0.00
Type A Unc. (typical)	σ	8.393E-05	m ²		1.68E-10	8.39E-11	A _o ⁻¹	1.19E+04	1.00E-06	1.00E-12	2.00
Piston/Cylinder: C-xxx			*Un	certainty in Tare	coefficient is a	n additive term.		Comb	pined Variance:	2.02E-11	
Masses: 2468-799/2465-799							Combined Un	certainty (k=1):	4.50E-06		
Operating Pressure: 139	uge mode, nit	orgen)				E	xpanded Unc	ertainty (k=2):	9.0 ppm		

- The following is a demonstration of the PG uncertainty calculation tool.
 - Is primarily based on the Ruska spreadsheet but expanded and automated to help reduce the amount of time evaluating.
 - Calculates an uncertainty for a range of pressures.
 - Includes comments as guidance in the evaluation.
 - Provides control charts for effective area and mass.
 - Is intended to be improved in the future.

FLUKE

- Improvements to follow with this tool?
 - Use of correlation where needed.
 - Include Differential Mode.
 - Better control charting for the mass set.
 - Simultaneous calculation of uncertainty for all modes.
 - Unknown issues or undesirable features that you tell me about.

FLUKE

• For questions complaints, complements please contact myself at:

mike.bair@flukecal.com 602 773 4734

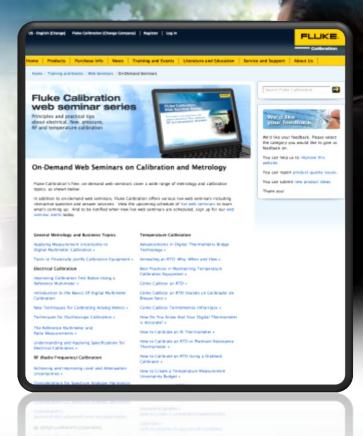
Thanks for joining us today. One favor I have. Please do not contact out technical support department or customer care center regarding the spreadsheet as they do not have the knowledge on this spreadsheet to answer your questions....
 Speaking of which...

QUESTIONS ANYONE?

FLUKE

Future web seminars

Temperature Calibration seminars coming soon:


 October 8: Annealing an RTD: Why, When, and How (presented in English)

- October 22: Annealing an RTD: Why, When, and How (presented in Spanish)
- November 12: Understanding Uncertainties Associated with Dry-block Calibrators (presented in English)

For the latest schedule visit

www.flukecal.com/calwebsem

Our seminar topics cover principles and practical tips about electrical, flow, pressure, RF and temperature calibration

Calibration

Thank you

Be the first to know. Sign up for Fluke Calibration e-news bulletins, and the quarterly *Total Solutions in Calibration* newsletter:

www.flukecal.com/signmeup

Materia and a second second