

Calibration

Calibration of molbox1+ flow terminal

©2016 Fluke Corporation

1

Calibration of molbox1+ Consists of:

- Calibration of the pressure transducers
- Verification of the Ohmic measurement system
- Calibration of the MFC function
 - If option is installed

molbox1+ pressure calibration:

- Calibration of the pressure transducers Requirements of standard:
 - Range: 20 to 600 kPa (3 to 87 psia) for molbox1+ A700K
 - Range: 20 to 300 kPa (3 to 45 psia) for molbox1+ A350K
 - Range: 100 to 1400 kPa (15 to 200 psia) for molbox1+ A1.4M
 - Range: 100 to 2000 kPa (15 to 300 psia) for molbox1+ A2M
 - Uncertainty: \pm 0.005 % of reading

Recommend using PG7601 or 2465 piston gauge

Temperature Calibration:

- Verification of Ohmic measurement system
 - molbloc simulators, set
 - 100 Ohm, ~0.0°C/32°F, PN 3069694
 - 107 Ohm, ~18°C/64°F, PN 3069682
 - 110 Ohm, ~26°C/78°F, PN 3069701
 - Each comes with cal. report and instruction sheet
 - Or use Reference resistors
 - Decade box
 - Other

Ohmic Measurement system (background1)

- molbox1+ includes an Ohmic measurement system used to measure the resistance of the two Platinum Resistance Thermometers (PRTs) mounted in a molbloc. The temperature of the PRTs is calculated from the resistance. The molbloc PRTs have nominal resistance at 0°C of 100 ohm and a slope of 0.3896 following DIN Norm 43760. The measured resistance at 0°C for each PRT is stored on the molbloc EEPROM and read by the molbox1+.
- The Ohmic measurement system self-calibrates using on-board 100 and 110 ohm reference resistors. On molbox1+ power up, an automated routine adjusts the Ohmic measurement system relative to the on-board, reference resistor readings. The on-board reference resistors used to calibrate the molbox1+ measurement system have uncertainty of \pm 0.01% and stability of \pm 0.0025% for one year, \pm 0.005% for three years.

Ohmic Measurement system (background2)

• The self-calibration feature and the very high accuracy and stability of the reference resistors relative to the uncertainty of the molbox1+ temperature measurements make it unnecessary to calibrate the Ohmic measurement system independently. It is good practice, however, to verify the Ohmic measurement system. This is most easily accomplished by connecting a known resistance value to the measurement circuit where the molbloc PRTs are normally connected and verifying that the molbox1+ reads the correct corresponding temperature when that resistance is connected. Reference resistors mounted in a molbloc simulator for easy connection to molbox1+ using the normal molbloc connection cable can be purchased. If the molbox1+ Ohmic measurement system and associated connections are working properly, when the simulator is connected the molbox1+, temperature indicated by molbox1+ should equal the reference temperature corresponding to the molbloc simulator reference resistor following: Ref T[° C] = (Ref Resist[Ω]-100)/0.3896

Ohmic Measurement system (background3)

 The Reference temperature [°C] calculated from the actual reference resistor value is written on the molbloc simulator. The temperature value read by the molbox1+ when the molbloc simulator is connected can be observed by pressing [P&T] on the molbox1+ front panel. The disagreement between the reference temperature and the molbloc indication should not exceed 0.05°C.

Temperature Calibration:

- Verification of Ohmic measurement system
 - Alternate method, resistance standard / decade box
 - Calibration cable kit, PN 3071644
 - Use with decade box
 - Can also use to calibrate molbloc simulators

- Calibration of the MFC option
 - Precision voltmeter: 0 10 vDC, 0-25 mA DC
 - Uncertainty: \pm 0.02 % of reading
 - Analog calibration cable 3069720
 - CalTool for Analog calibration software, included with molbox1+ when shipped with MFC option. Software also available on <u>flukecal.com</u> website

FLUKE

Calibration

🔰 Caltool for Analog				
<u>S</u> etup <u>H</u> elp				
Model: molbox1+Ver6.00b	As Received Errors:			
Serial Number: 719	Test Point 0.1	Set -0.002	M	
Switchbox: not present	3.0 5.0	3.476 4.622		
Set: 5.000 V				
Measure: 4.999 V	As Left Errors:			
Sense: 4 999 \/	Test Point	Set	M	
Sense: 4.000 V	0.1	-0.217	_	
	3.0	0.477		
DMM: 5.02481 V	5.0	-0.413		

MFC Option Information (from manual)

- molbox1+ may be delivered with an optional MFC control option. The MFC control option allows voltage or current set points to be set to a MFC, and voltage or current values to be read back from a MFC or MFM.
- The MFC control option is self-calibrating using on-board 5 and 10V references. Voltage is converted to current using a precision 250Ω resistor.
- The MFC control option signals are:
 - sense (V), measure (V or mA)
 - valve (V), negative power supply (V)
 - positive power supply (V), set (V or mA)
- Any of the MFC control signals can be adjusted using adders and multipliers in the same manner as the pressure adders and multipliers used to adjust the molbox1+ Q-RPTs. The normal procedure, however, is to use the *molbox1 Analog Calibration* software and cable provided with the accessories of a molbox1+ delivered with the optional MFC control option

* 101.00)1 sccm	N2
S1.020	M1.03	v

+ 15.11 V	-15.15V
S1.020 V	11.29V